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Abstract

In this paper the relation between local- and field-scale solute transport parameters in an unsaturated soil profile is investigated.
At two experimental sites, local-scale steady-state solute transport was measured in-situ using 120 horizontally installed TDR-
probes at 5 depths. Local-scale solute transport parameters determined from BTCs were used to predict field-scale solute trans-
port using stochastic stream tube models (STM). Local-scale solute transport was described by two transport models: (1) the
convection-dispersion transport model (CDE), and (2) the stochastic convective lognormal transfer model (CLT). The parame-
ters of the CDE-model were found to be lognormally distributed, whereas the parameters of the CL'T model were normally dis-
tributed. Local-scale solute transport heterogeneity within the measurement volume of a TDR-probe was an important factor
causing field-scale solute dispersion. The study of the horizontal scale-dependency revealed that the variability in the solute
transport parameters contributes more to the field-scale dispersion at deeper depths than at depths near the surface. Three STMs
were used to upscale the local transport parameters: (i) the stochastic piston flow STM-I assuming local piston flow transport,
(ii) the convective-dispersive STM-II assuming local CDE transport, and (iii) the stochastic convective lognormal STM-III
assuming local CLT. The STM-I considerably underpredicted the field-scale solute dispersion indicating that local-scale dis-
persion processes, which are captured within the measurement volume of the TDR-~probe, are important to predict field-scale
solute transport. STM-II and STM-III both described the field-scale breakthrough curves (BTC) accurately if depth dependent
parameters were used. In addition, a reasonable description of the horizontal variance of the local BTCs was found. STM-III
was (more) superior to STM-II if only one set of parameters from one depth is used to predict the field-scale solute BTCs at
several depths. This indicates that the local-scale solute transport process, as measured with TDR in this study, is in agreement

with the CLT-hypothesis.

Introduction

To asses the risk of contaminant leaching from hazardous
- waste sites, it is crucial to describe and predict the field-
scale solute transport accurately. Several studies have
shown that the field-scale mean breakthrough curve (BTC)
in a heterogeneous porous medium can be described by the
one-dimensional macroscopic convection-dispersion equa-
tion (CDE) (Roth ez al., 1991; Jacques et al., 1997). The
transport parameters pertaining to the macroscopic CDE
are usually called effective transport parameters. These are
the effective average solute particle velocity, v,4 [L T,
and the effective dispersion coefficient, D,y [L? T-!]. The
effective parameters incorporate the complex tortuous flow
path of the solutes as well as the horizontal and vertical

heterogeneity of the soil (Beven er al., 1993). Based on
column-scale (e.g., Khan and Jury, 1990; Zhang, 1995;
Mallants, 1996; Vanderborght er al., 1997a) and field-scale
solute transport studies (e.g., Butters and Jury, 1989;
Jacques ez al., 1997), it was shown that D,y increases with
increasing transport distance. Consequently, field-scale
solute transport can only be described by a 1-D CDE
model by assigning different parameters to different
depths. Furthermore, D g is larger than the local disper-
sion coefficient, D, due to horizontal variability of the local
pore water velocity, v (Amoozegard-Fard et al., 1982;
Mallants ez al., 1996; Toride and Leij, 1996a,b).

As an alternative to the use of the classical CDE in
describing field-scale solute transport, Jury et al. (1982)
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proposed a transfer function approach. This approach
relates the output variable of interest (e.g., field-scale BTC
at a given depth) to an input condition (e.g., a finite pulse
input). One model is the stochastic convective lognormal
transfer function model (CLT, Jury, 1982) which assumes
that the velocity of a solute particle remains constant along
its travel path through the soil. Furthermore, the proba-
bility density function (pdf) of solute particle velocities is
assumed to be lognormally distributed. This model has
been used successfully in several studies to describe the
mean field-scale transport process (e.g., Jury et al., 1982;
Butter and Jury, 1989; Jacques ez al., 1997).

In the last decade, several models became available for
the prediction of the field-scale BTC and the correspond-
ing effective parameters from the statistical moments of
local soil hydraulic properties. Apart from the stochastic
models which describe 2-D and 3-D solute transport in
heterogeneous soils (e.g., Russo, 1993; Tseng and Jury,
1994; Roth and Hammel, 1996; Harter and Yeh, 1996;
Vanderborght et al, 1997b), there is a set of models
referred to as stream tube models (STM) which assumes
1-D water flow and solute transport (Dagan and Bresler,
1979 and Bresler and Dagan, 1979). In this model, solute
flow is coupled to the water flow equation and solved for
heterogeneous velocity fields determined by the statistics
of the soil hydraulic properties. Recently, Dagan (1993)
and Destouni (1993) extended these STMs for reactive
transport and solute transport in macroporous and layered
soils.

Another group of STMs predicts field-scale transport in
heterogeneous soils based on local-scale observations of
solute transport instead of observations of local soil
hydraulic properties. Several different types of such
STMs have been developed. They are distinguished by
conceptual differences in the description of local transport
such as local piston flow (Jury and Roth, 1990); local con-
vection-dispersion transport process (Toride and Leij,
1996a,b); or local stochastic convective solute transport
(Vanderborght et al., 1997a). The objective of these mod-
els is to upscale local-scale parameters for describing field-
scale BTCs and to derive values of D, at different depths
to predict BTCs throughout the soil profile. However,
studies of the validation of these different STM using
field-scale observations or comparison of different local-
scale transport models are rare in the present literature.

The main objective of the present study is to compare
the predictive capacities of 3 STMs. For this purpose,
solute transport was measured at two sites along a transect
of 8 m (5 depths and 24 locations) using horizontally
installed TDR-probes. Statistical analysis of the measured
transport behaviour at the local scale provides an estimate
of the field-scale transport, in addition to the input data
necessary for the stream tube models. Jacques et a/. (1997)
described the experimental design and identified the gov-
erning transport processes at the field-scale using the field-
averaged BTC. In this paper, the statistical parameters
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describing the variability of the local-scale BTCs are deter-
mined and the three STMs are compared. In a theoretical
section, the mathematical concepts of the three STMs are
reviewed briefly and it is shown how they relate the pdf of
local-scale transport parameters to the field-scale trans-
port. The field experiments are then described and the
methods used to identify (a) the multivariate pdf of the
local-scale transport parameters, and (b) the horizontal
scale-dependency of the solute parameters are discussed.

Theory of Stream Tube Models

The field-scale solute transport process is restricted to
1-D solute transport and solute particles are moving ver-
tically downwards in stream tubes without exchange of
water and solutes between the stream tubes (Fig. 1, top
figures). Stream tubes with a high average solute particle
velocity at time ¢ = 0 also have a high average solute par-
ticle velocity at time ¢ = ¢ + At. Therefore, the field-scale
solute travel time variance and D4 increase with depth.
Although this is not a universal trend in solute transport
through the unsaturated zone, it was observed in many
field-scale solute transport experiments (e.g., Butters and
Jury, 1989; Hamlen and Kachanoski, 1992; Ellsworth et
al., 1996; Rudolph ez al., 1996).

The solute transport at the local-scale, i.e., within a sin-
gle stream tube, can be described as either (i) a piston flow
type process which neglects intra-scale heterogeneity (i.e.,
absence of local-scale dispersion, Fig. la), (ii) a convec-
tion-dispersion process (Fig. 1b), or (iii) a stochastic con-
vective process (Fig. 1c). Both the convection-
dispersion and the stochastic convective model include
intra-scale heterogeneity. The local-scale parameters of
these three models are considered spatially variable and are
treated mathematically as spatially uncorrelated random
variables, X. The multivariate pdf, fx(x1, . . . , x,) where
X1, . . . , ¥, are the parameters describing the local-scale
process model of choice (i, ii, or iii), is determined from
field experiments, in which a large number of local BT Cs
are measured. Thus a (random) sample of local-scale trans-
port parameters X is obtained by matching the local-scale
process model to the locally measured BTCs. Assuming
stationarity and ergodicity, the sample pdf obtained from
a single realization can be considered representative for the
multivariate pdf fx(x, . . . , xy). Once fx(x1, . . ., &) is
known, the STM model allows:prediction of the field-scale
solute concentration, which is defined as the ensemble
mean concentration, <C(z,£)>, at depth z, given a time z.
Brackets (< >) indicate the expectation operator. The
ensemble mean is computed by integration (Jury and
Roth, 1990, eq. 4.1):

<C(z,t)> = I j C(2, 53,8550+ 5 %,)
P 0))

Sx(ey, 2y, . o, )dxdx,. . . dx,
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(2) Stochastic piston {low STM

(b) Convective-dispersive STM

(¢) Stachastic convective-lognormal STM
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Fig. 1. Schematic representation of the three stream tube models at the field-scale (top) and the local-scale (bottom) for (a) the stochastic pis-
ton flow model, (b) the convective-dispersive STM and (c) the stochastic convective-lognormal STM. For the field-scale, light shaded and
dark shaded areas illustrate solute distribution in the stream tubes at time t and t+At after a pulse application of constant duration, respec-
tively. For the local-scale, solute particle variance is indicated with the dashed line at time t and t + At.

where C{z,t;x1,x2,. . .,¥,) 1s the solute concentration at
depth z and time ¢ in the stream tube, x1,%2,. . .,x, are the
transport parameters within each stream tube, and
Sx(x1,%2,. . .,%y) is the joint multivariate pdf of the solute
transport parameters (e.g., the bivariate normal or lognor-
mal pdf (Eqn. 14)). Variability in local BT Cs leads to field-
scale dispersion that is larger than local-scale dispersion.
Field-scale dispersion is the combined effect of local-scale
dispersive processes (due to heterogeneity within a stream
tube) and the field-scale variability of local scale BTCs,
expressed by the variance of C(z,t), Var[C(z,)]. The vari-
ance of the local BTCs at depth z is given as (Jury and
Roth, 1990):

Var[C(z,t)] = ]-'” .. T[C(z,t;xl,xz,. . .,Jc,,)—<C(z,t)>]Z

Sxo, a0, o x,)dxdx,. . . dx, 2

Solute concentrations can be represented as flux-
averaged concentrations, Cf(z,t), or as resident or volume-

averaged concentrations, C'(z,t). The latter concentration
mode is of particular interest in this study because solute
concentrations were obtained using TDR (see next sec-
tion). Since the local-scale concentration mode is also of
this type, both the local- and field-scale models will be
expressed as time normalized resident concentrations. For
each of the three different conceptual STMs, the follow-
ing sections will briefly introduce (a) the local-scale trans-
port model and the approach used to obtain local-scale
parameters from measured local-scale BTCs, and (b) the
effective parameters describing field-scale mean transport
defined by Eqn. (6). For the latter it is assumed that
field-scale solute transport (Eqn. 6) follows the standard
convection-dispersion equation.

STOCHASTIC PISTON FLOW STM

The first model assumes that local solute flow can be
described by a piston flow process resulting in the field-
scale stochastic piston flow model (Fig. la). All solute parti-
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cles in a single stream tube have the same velocity. At the
local scale, there is no solute dispersion and the solute
spreading does not increase with depth (Fig. la, bottom).
However, the pore water velocity differs between the dif-
ferent stream tubes causing the field-scale solute disper-
sion.- Many studies ‘have shown that the different

convection velocities are caused by the spatial variability in

the soil hydraulic properties (e.g., Biggar and Nielsen,
1976; Bowman and Rice, 1986; Destouni et al., 1994).

For a narrow pulse of solute at the surface (a Dirac-delta
input function), the field-scale time-normalized flux con-
centration at a depth z is equal to the field-scale: solute
travel time pdf, f/{z,#), which can be related to the pdf of
the solute particle velocities, fi{v), as (Jury and Roth,
1990, Eqn. 4.4):

C/(z,1)

= £f =2
= f (z’ t) = ;z“ﬁ/(v) (3)
J' C (2, Dt
A
For stream tube transport, the field-scale time-normalized
resident concentrations, <C""(z,s)> can be written in
terms of f/(z,r) as (Vanderborght ez al., 1996):

C'(z,t)
I C'(=, Ot
A ,

1

=‘<Cm( )> id T? 1)

2V _

« &4 fy(V) @

where T is the first time moment of the travel time flux
pdf. If the distribution of the average solute particle veloc-
ities is specified, 7/ can be calculated as 7% = E ,(¢) = z
E 1(1/v) where E ;1(.) is the expectation or ensemble aver-
age of fV(v) If it is assumed that f}(v) is a lognormal pdf,
then 7Y is given as:

Tf 2 exp(—:ulnv + 0 Salnv) (5)

where Miny and 0y, are the mean and the standard devia-
tion of the loge-transform of v obtained from the locally
measured BTCs.

If the field-scale solute transport can be described by a
convection-dispersion equation with effective transport
parameters:

a C'" az rtw rtw
), 2o, ey

or oz Ox
with the effective parameters v,g and D,g The effective
parameters can be expressed as a function of the statistical
moments of the local-scale transport parameters (Table 1).
For the piston-flow model, the first and second travel time
moment of the field-scale solute flux BTC (Eqn. 3) are
expressed as a function of wj,, and o7, For the specified
boundary conditions in" this study, these travel time
moments can be related to the effective parameters verand

D of Eqn. (6) (Leij and Dane,; 1991) resulting in the
expressions in Table 1.

Table 1. Effective parameters of the macroscopic CDE as a function of the statistics of the local-scale solute transport parameters.

Veff
PF—STM*  exp(—y,, +0.502,)"
_ AD) 2z 2y _
CD-STM z exp(362 — 2p,,0,0,) + exp(ov)
(v ( v)
[ 4(V Y exp(YIOO"Z, ~8p,,0,0, + 05) +
‘f 5 ex0(60% ~3p.00,00) +

@ )2 —~— exp(302)* ]]

SC-STM (v)

2 _ (exp(0i,) =1
2 €x p( :u'lnv + 0 50'1,,.,,)

4( ¥ o 02
[ % exp(100;,

2
8p,,0,0, +0p) +

4( ) ) exp(60' 3va0' O'D) +— ( 2)

0.5
; exp'(-soz)]' -

exp(sov 2p,p0,0p) + exp(ob”

(v)

[ 7 exp(30, — 2p,,0,0,) + (—; exp(0y) —
(D)’
(v)*

4 D)z
(v
0.52(v)exp(Gy, +{0)}) — 1]

exp(1062 — 8p,,0,6,, + o3+

2 0.5
exp(602 — 3p,,0,0,) + 57 exp(soz)]

* Stochastic piston flow STM
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CONVECTIVE-DISPERSIVE STM

In the second model, it is assumed that local-scale solute
transport can be described as a convection-dispersion
process (CDE) and the field-scale model is referred to as
a convective-dispersive STM (CD-STM, Toride and Leij,
1996a,b) (Fig. 1b). The CDE-model represents an infinite
time process by assuming that the time for mixing is small
compared to the convection time (Jury and Fliihler, 1992).
Within a single stream tube, pore groups with different
pore water velocities are present and solute particles mix
between the different pore groups. Consequently, the
solute particle arrival time at depth z = zj is uncorrelated
with the solute arrival time at 2 = 2; and the solute arrival
time variance increases linearly with depth (Fig. 1b, bot-
tom). The field-scale dispersion is the result of both the
local-scale dispersion and the horizontal variability of the
local-scale CDE-transport parameters. Toride and Leij
(1996a,b) investigated theoretically the influence of the sta-
tistics of the local-scale parameters on the field-scale BTC,
the variance, vgrand D,y Previous tests of the applicabil-
ity of the CD-STM were based on a numerical experiment
(Toride and Leij, 1996b) and a lysimeter-study (Mallants,
1996).

The analytical solution of the local-scale CDE model for
a mobile, conservative, inert solute applied as a narrow
pulse at the soil surface (Boundary Value Problem) is
(Jury and Roth, 1990, eqn. 3.12):

cmm%ﬁ=7%;a{—@L§’] @)

_v_zexp[g}”ﬁ[z+w:|

2D | D N

where v is the average solute particle velocity [cm day]
and D is the dispersion coefficient [cm? day!]. The local-
scale parameters v and D are obtained here by fitting Eqn.
(7) to the measured BTCs using the SAS NLIN-
procedure (SAS Institute Inc., 1989).

The field-scale solute concentration is obtained by
replacing C(z,5;%1,42,. . .,%,) in Egn. (1) by the time-
integrated normalized resident concentration (Eqn. (7)).
Toride and Leij (1996a) further assumed (i) that the ran-
dom parameters v and D can be described with a bivariate
lognormal distribution and (ii) that the soil water content,
6, is deterministic over all stream tubes so that local dif-
ferences in v are caused entirely by the variability in water
flux density. This simplification is justified because the
coefficient of variation, CV, of 8 is sufficiently small, gen-
erally 0.2 or less (Jury, 1985). Since water was applied uni-
formly at the input surface of the two experimental fields,
water is assumed to be funnelled due to horizontal redis-
tribution close to the input surface.

The field-effective parameters v, and. D, of Eqn. (6)
are derived from the time moments of the field-scale resi-
dent BTC. These time moments were expressed as a func-

tion of <v>, <D> gy, op, and pyp with <v> and <D>
the ensemble averages of v and D (see Eqn. 19), o the
standard deviation of log-transformed :variables and pyp
the correlation coefficient (see Eqn. 17). These expressions
are derived using Eqn. (A3) in Toride and Leij (1996a).
The resulting expressions are given in Table 1.

STOCHASTIC CONVECTIVE LOGNORMAL STM

The third model considers a local stochastic convection
solute transport process (Simmons, 1982). The solute par-
ticles have different velocities as is the case in the local
CDE-model, but the velocity of a solute particle does not
change with depth. The different solute particle velocities
originate from different pore water velocities within a sin-
gle stream tube. In contrast with the CDE-model, how-
ever, there is no exchange of solute particles between pores
with different water velocities. Solute particle arrival times
are perfectly correlated and the solute arrival time variance
increases quadratically with depth (Fig. lc, bottom). In
this study, the convective lognormal transfer function
model (CLT, Jury, 1982) is used which assumes a lognor-
mal pdf of the pore water velocities. The field-scale model
is called a stochastic convective lognormal STM (SC-STM,
Fig. 1c). Vanderborght et al. (1996a) expressed the field-
scale parameters as a function of the statistics of the local-
scale CLT parameters. However, they could not validate
the expressions since there was no representative observed
field-scale transport available.

For a narrow pulse of a conservative solute at the soil
surface, C**(z,x,f) is described by the CLT- model as
(Vanderborght et 4l., 1996):

[o2)-»)

q_, Z

(=L : 5
2

®)

with g and 0y the CLT-parameters and / is the reference
depth, defined since u; is dependent on the depth of
calibration. Therefore, each BTC is transformed to the
reference depth (in this study, the reference depth is 100
cm) by Eqn. (2.65) in Jury and Roth (1990). The parame-
ters gy and oy are obtained by fitting Eqn. (8) to the
observed local-scale BTC using the SAS NLIN-procedure
(SAS Institute Inc., 1989). The average solute particle
velocity v and the dispersion coefficient D, assuming a
CLT-transport process, can be calculated from p; and o)
as follows (Jury and Sposito, 1985):

Verr = lexp(—p —0.50%) &)

_ & _(exp(0®) 1)

D,
arT exp(i + 0.567)

(10)
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Assuming that the field-scale transport process can be
represented by a field-scale CLT-model (Eqn. 8) and that
Ji(v)-is a lognormal pdf, the field-scale solute BTC with
effective parameters i g and g4 can be written as a func-
tion of the local solute transport parameters (Vanderborght
et al., 1997a):

Mg =In(z/(V)) - Lo}, — 1{o)* (11)
Gy = Op, +(O) (12)

where v is expressed as a function of the local-scale CLT-
model parameters (Eqn. 9), o1,y is the standard deviation
of the loge-transformed v, <v> = exp(tiny + 0.50%,,) with
Miny the mean of the loge-transformed v and <o> is the
ensemble average of the local model parameter o.
Assuming that the variability of 8 and ¢ is small compared
to the variability of v, 6 and o are treated as deterministic
over all sets of sampled stream tubes. Field-scale transport
may be conceptualized as the response of an injected solute
pulse subject to several sources of spatial variability, one
arising from the variability in solute velocity v within a set
of stream tubes (characterized by o) and one from the vari-
ability in solute velocity v between different sets of stream
tubes. Using Eqns (11) and (12) in Eqns (9) and (10), the
effective parameters v,5 and D, g are obtained (Table 1).

Materials and Methods
DESCRIPTION OF THE FIELD EXPERIMENT

Two field experiments were conducted to monitor the
solute plume movement in an undisturbed field plot under
steady-state conditions for a loamy and a silty-loam soil.
The loamy soil is located in an orchard at Bekkevoort
(Belgium) and is classified as an Eutric Regosol in the
FAO-classification system. The soil profile consists of
three main horizons, i.e., Ap (0-25 cm), Cl (25-55 cm),
and C2 (55-100 cm) with an abundance of mainly verti-
cally oriented macropores throughout the soil profile
(Mallants ez al., 1997a). The silty-loam soil is located in a
fallow soil at Jiilich (Germany) and has five distinct hori-
zons: Ap (0-30 cm), Eg (3040 cm), Btgl (4060 cm), Btg2
(60-100 cm) and C (> 100 cm). In the FAO-classification
system, it is classified as a Stagnic Podzoluvisol. A detailed
description of the experimental design, TDR-calibration
and identification of the transport process at the field-scale
is given by Jacques ez al. (1996). However, for the benefit
of the reader, a short description of the experimental pro-
cedure will be repeated here.

In an 8 m long and 1 m deep trench, triple-wire TDR-
probes were installed horizontally at 24 locations and 5
depths at each location. In Bekkevoort, measuring depths

were at 10, 30, 50, 70 and 90 cm and the horizontal spac-

ing was 35 cm. At Jiilich, TDR-probes were installed at
15, 35, 50, 70 and 90 cm depth with a horizontal spacing
of 33 cm. An irrigation system applied a constant water
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flux of 2.8 cm day™! in Bekkevoort and 1.5 cm day~! in
Julich. After three weeks of irrigation, steady-state flow
conditions were established. A pulse of CaCl,.2H,0 with
a concentration of 87.5 g I'! and 80 g I! was applied dur-
ing 5.7 and 8 hours for Bekkevoort and Jiilich, respec-
tively, so that the water flux during solute application was
identical to the steady-state water flux. After solute appli-
cation, the irrigation was restarted and the downward
leaching of the solute plume was monitored with an auto-
mated TDR-system developed by Heimovaara and de
Water (1993). Measurements of the soil water content and
bulk electrical conductivity were taken every 2 hours in
Bekkevoort and every 4 hours in Jiilich over a period of 42
and 65 days for Bekkevoort and Jiilich, respectively.

DETERMINATION OF LOCAL-SCALE BTCS

The TDR measured resistance to flow of an electromag-
netic wave through soil, R [(}], was corrected for cable
resistance and temperature and converted to the bulk soil
electrical conductivity, EC, [dS m™], following the
method of Heimovaara and de Water (1993). EC, was
transformed to the electrical conductivity of the soil water,
ECy [dS m™], using the three-pathway conductance
model of Rhoades er al. (1989). Finally, EC, was con-
verted to total resident concentration C* (g 1-!) using an
empirical relation. The calibration methed invoked gave
mass recoveries for the mean breakthrough curves ranging
from 88% to 164% for the Bekkevoort and 102% to 118%
for the Jiilich field site (Jacques et al., 1996).

The local-scale solute transport is measured with TDR-
probes sampling an average soil volume of approximately
5000 cm3. The measured resident concentrations, Ct(2,x,?)
at depth z [cm], location x [cm], and time ¢ [day] were
transformed to time-integrated normalized resident con-
centrations, C* *(z,x,f) [day]:

Cﬂ*(z,x, t) = — C’(z,x) t)
jcawmm (13)

0

FIELD-AVERAGED TRANSPORT

The field-scale BTCs were calculated as the arithmetic
averages of the local BTCs across the horizontal plane.
Field-scale BT'Cs for all 5 depths were analysed in terms
of average solute arrival time, E,(¢), and travel time vari-
ance, Var,(t). In Bekkevoort, solute transport was highly
influenced by the presence of macropores, as was previ-
ously shown by Mallants ez al. (1994, 1996). The observed
solute movement was slower near the soil surface then at
greater depths since more macropores were present at the
shallow depth (Mallants et al., 1997b), resulting in a larger
amount of water bypassing the TDR sampling volume.
Jacques ez al. (1996) found an increase of the dispersivity,
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A [cm], for both soils except at the fifth depth in field
Julich. A maximum of 6.4 cm was measured at 90 cm
depth for Bekkevoort and 7.3 at 70 cm depth for Jiilich.
The field-scale solute transport behaviour was better
described by a stochastic convective process than by a con-
vection dispersion process.

IDENTIFICATION OF MULTIVARIATE PROBABILITY
DENSITY FUNCTION

Prediction of field-scale solute transport using one of the
three STM models requires the multivariate pdf of the
local-scale parameters. Two multivariate pdfs will be con-
sidered in this study: (i) the bivariate normal and (ii) the
bivariate lognormal pdf, given by (Spiegel, 1992):

2_2 2
i) = ——exp| - TR ATy
2m\1- o2, 21-p7,)
(14)
with
x— U, y— i,
v,=2h v R
R ars 1)

where u. and o, are the mean and standard deviation of
the untransformed variables for the case of the bivariate
normal distribution. For the case of the bivariate lognor-
mal pdf, expression of Yy and Yy are:
lo AX) — Hips logt(y)_#n
Y; = g( ) Hi , Y;, = Iny (1 6)
O O.Iny

with up, and oy, the mean and standard deviation of the
loge-transformed variables. The correlation coefficient, p,,,
between Y, and Y, is given by

o =YY= [ [V s ity )

where x,y are v, D for the CDE and p, oy for the CLT,
respectively. The ensemble average of a parameter, <x>,
and the coefficient of variation (CV) are given by
(Aitcheson and Brown, 1963):

(x) = u,
CV=o0/u, (18)

for the normal pdf and:

(x) = exp(”lm: + Oso-lzmr)
CV = (exp(07,)— D*° (19)
for the lognormal pdf.

One way to test whether the bivariate pdf is a lognormal
or normal pdf is to test the (log)normality of the univari-
ate pdfs for both parameters. However, this procedure
does not guarantee that the resulting multivariate pdf is
normal or lognormal (Jobsen, 1992). To test the bivariate
normality, the squared Mahalanobis distance, m?%, which

takes into account the variance and covariance structure of
the distribution, is calculated for each observed parameter
vector and compared with the x? distribution (Jobsen,
1992). The squared Mahalanobis distance m between an
observation (;, y;) and the sample means (%,7) for a bivari-
ate distribution is given by:

m; = (x; — XS (x; ~ &) (20)

where S is the sample covariance matrix containing s, s,
and 7, which are the sample standard deviation of x and
y, and the sample correlation between x and vy, respec-
tively. The ordered m’-values are compared with the
percentiles of the x> distribution and a plot of the (m3,
X{1-c,2) PoInts, where (1 — &) = (7 — 0.5)/n and # the num-
ber of observations, should be close to a straight line. This
test is performed using either the untransformed or the
loge-transformed values.

HORIZONTAL SCALE-DEPENDENCY

Van Weesenbeeck and Kachanoski (1991) stressed the
importance to validate if the measured field-scale BTCs
obtained by spatially averaging local-scale measured
BTCs, are representative for ‘true’ field-scale BTCs. Their
criterium to test this is the horizontal scale-dependency of
the spreading in the BTCs. The local BTCs are averaged
over a spatial scale K as:

K-1
Celz,t,]) = YL—EC(z, 11+i) 21
i=0

where K = 1,. . ,L (and L the number of measured local-
scale BTCs), /=1,....L + 1 - K. If K = 1, then Cx(z,t,))
equals the local-scale BTC, whereas the field-scale BTC at
depth z is obtained for K = L. For the average BTC at
spatial scale K| the average variance is given as:

ExlVar() = B| [ [t - Ecle, DPCrle . )dt | (22)
0

where E[.] is the expectation operator and Ex(z,/) the first
time moment, given as:

oo

Ee(z,]) = j 1C(z, 1, dt @3)

0

Van Weesenbeeck and Kachaneski (1991) reasoned that
if the average variance reaches a maximum value with
increasing horizontal spatial scale, the estimate of the field-
seale variance should be representative for the ‘true’ field-
scale variance since it is no longer function of the
horizontal scale. In fact, they compared the shape of the
spatial scale-dependency of the variance with the shape of
a semivariogram, with the sill referring to the field-scale
variance and the range (i.e., the spatial scale at which
ExlVar(z)] reaches its maximum) the minimal spatial scale
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Fig. 2. Measured extremes for local BTCs at five depths for both
Sfields.

necessary to obtain reliable estimates of the field-scale
BTC (Ward ez al., 1994).

Results and Discussion
LOCAL SOLUTE TRANSPORT

The Bekkevoort and Jiilich field-sites will be referred to
field A and B, respectively. Fig. 2 gives the local resident
concentration BTCs for the lowest and highest solute
peak, and the earliest and latest BTC in terms of the peak
concentration. The extreme BTCs for field A were more
irregular, displaying early breakthrough and multiple
peaks, whereas those for field B were more uniformly
shaped. At the first three depths at field A, most variabil-
ity between the BTCs was found in the magnitude of the
peak concentrations. At the other depths and at field B, the
variability in the spread of the BTC is much more pro-
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nounced. Except for some extreme BTCs, most BTCs had
the typical shape of a CDE or CLT solutions for the
transport process.

The CDE- and CLT-model were curve-fitted to all
BTCs using an ordinary least-squares optimization, result-
ing in 120 fitted parameter vectors {v,D} for the CDE-
model and {,01} for the CL T-model for each site. Some
examples of fitted BTCs for both sites are shown in Fig.
3. In general, both models described the observed BTCs
fairly well (with R? mostly larger than 0.90). In many
cases, however, both models underestimate the fast break-
through, especially at field A. At the first depth in field A
(at 10 cm), the CDE and CLT models overestimate the
tail of the BTC whereas at larger depths the fitted curves
describe the complete BTC quite well.

Determination of the joint multivariate pdf is mostly
based on the statistics derived from the univariate para-
meter pdf. However, the hypothesis of multivariate nor-
mality or loge-normality is rarely checked. The present
analysis of the multivariate pdf includes such a check. Fig.
4 shows the differences between the squared Mahalanobis
distance m? and X7;.q) plotted against the m? values based
on the original and loge-transformed parameter vectors for
the CDE and CLT models. For field A (Fig. 4a), the dis-
tribution of the CDE parameters v and D is better
described by the bivariate lognormal pdf because the dif-
ference {xz(l -2 — m3} is generally smaller for loge-trans-
formed than for untransformed parameters. Laboratory
solute transport experiments on 30 undisturbed soil
columns (20 cm long, 20 cm diameter) taken from the
same site in Bekkevoort also revealed lognormally distrib-
uted CDE parameters (Mallants et a/, 1996). The CLT
parameters w and oy are better described by the bivariate
normal pdf (Fig. 4c).

For field B, the CDE and CLT parameters may be
described equally well by the bivariate normal as by the
bivariate lognormal pdf. The bivariate pdf of v and D was
considered lognormal since this is assumed in the CD-
STM (Toride and Leij, 1996a). The bivariate pdf of the
CLT parameters was assumed to be normal by analogy
with the Bekkevoort site. Due to the exponential relation
between v, D and w,0 (Eqns. 9 and 10), a normal distrib-
ution of u and ¢ involves a lognormal distribution of v and
D. Therefore, a normal distribution of & and o is in bet-
ter agreement with the lognormal pdf of v and D reported
in other studies (e.g., Biggar and Nielsen, 1976; Van de
Pol et al., 1977; Jaynes et al., 1988; Jaynes and Rice, 1993;
Gupte et al., 1996; Mallants,1996).

Table 2 summarizes the statistical parameters for the
bivariate lognormal pdf for the CDE parameters. For field
A, <v> increases with increasing depth due to a larger
macroporosity in the topsoil in comparison with the deeper
layers. A transport experiment on long undisturbed
lysimeters using the same soil under saturated conditions
also showed an increase of <v> with depth (Mallants,
1996). It may be that, at shallow depth, the measurement
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Fig. 3. Measured BTCs (open circles), fitted CDE- (full line) and CLT-model (dashed line) at three depths for both fields.

window of the TDR-probes samples mainly the slower
transport zones whereas faster transport in macropores is
not detected. At greater depths, flow became more homo-
geneous resulting in a larger transport volume which could
be better detected with TDR-probes. Values of <v> for
field B were relatively constant with depth suggesting a
more similar flow process across horizons. The horizontal
variability in v expressed in terms of the coefficient of vari-
ation (CV) is somewhat larger in field B then in field A.
The largest CVs for field A were found at the deepest
depth; the smallest were found at 30 cm. The result was
the opposite for field B: the smallest CVs were found at 90
cm, the largest at 35 cm.

The increase of both <D> and the dispersivity <A> =
<D> / <v> with depth at both sites contradicts the
assumption that the local-scale transport parameters. are
constant with depth. CV values for D are larger than those
for v for both fields. This higher CV of D is in agreement
with a higher variability in solute dispersion in compari-
son with:the variability in the occurence of the time.of the
peak concentration observed at most depths. (Fig. 2).
Correlation coefficients between v and D were calculated

based on their loge-transforms. Only one such correlation
coefficient for field A and three correlation coefficients for
field B differ significantly from zero at a significance level
of 5% (Table 2).

In Table 3, the statistics of the CLT parameters are
given together with the estimated average solute particle
velocity based on w and o (Eqns 9 and 10). Values for
<>, calculated from g and gy, show the same tendency
as <v> obtained from the CDE-model, i.e., an increase
with depth at field A and relatively constant with depth at
field B. At both sites, <v> obtained from the CLT-model
is larger than <v> from the CDE-model. This is a conse-~
quence of the derivation of <v> from time series of resi-
dent concentrations .as was' shown in the theoretical
analyses in, e.g., Jacques et a/. (1996) and Vanderborght ez
al.-(1996).

MACROSCOPIC CDE, VARIANCE AND HORIZONTAL
SCALE-DEPENDENCY ‘

In Fig. S‘,lthe observed field-scale BT'Cs together with the
fitted macroscopic CDE are shown. The estimated field-
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transport parameters of the CDE-model (a,b) and the CLT-model (c,d) for field A and B.

scale parameters % and D are given in Table 2. For field
A, the description of the BTC at early times is not so good
throughout the entire soil profile (Fig. 5a). The macro-
scopic CDE describes the observed field-scale BTC well
near the surface of field B (Fig. 5b), but deeper in the soil
the leading edge of the BTC is underestimated.

The ensemble mean solute particle velocity, <v>, based
on the lognormally distributed v parameters of the local-
scale BTCs, is generally in agreement with the macro-
scopic solute velocity, % (Table 2). Small differences exist
between the ensemble mean dispersion coefficient, <D>,
and the field-scale dispersion coefficient, D, for field A.
This suggests that the contribution from local velocity
fluctuations to field-scale spreading is minimal in field A.
Values for D in field B are slightly larger than values for
<D>, indicating modest contributions from velocity fluc-
tuations to field-scale dispersion. Similar observations
were made for the CLT parameters: the <p> and <v> are
at some depths larger and at other depths smaller than the
frand o of the field-averaged BTC (Table 3). Also & of the
field-averaged BT'C is larger than <o>, and the difference
between <o> and & is small for field A and moderate for
field B. Schulin et al. (1987) also found that the ensemble
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averages of the local velocities agreed well with the macro-
scopic solute velocity, but that differences between aver-
aged local dispersivities and field-scale dispersivity were
rather large. In the study of Gupte et al. (1996), similar
small differences between field-scale parameters and the
ensemble averages of local-scale parameters as in the pre-
sent study were found. With respect to stochastic simula-
tions using a STM, Gupte et al. (1996) showed that
deterministic CDE predictions of the field-scale BTC,
based on <v> and <D>, were in good agreement with sto~
chastic predictions based on the CD-STM. In contrast,
Destouni ez al. (1994) found a large discrepancy between
the arithmetic averages of the local-scale and the field-scale
transport parameters. They concluded that the statistics of
solute transport parameters should be estimated for the’
scale of interest. These different conclusions can be
explained by the imposed boundary condition. If solute
transport is measured under ponding conditions, large dif-
ferences between local and field-scale A were found
(Destouni et al., 1994; Mallants, 1996). Without ponding,
local-scale A was close to the field-scale A and a determin-
istic approach may be adequate (Gupte ez al., 1996).

The dispersivity of field A is much smaller than the
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observed A in the lysimeter study of Mallants (1996) where
solute transport was measured using TDR-probes under
ponding conditions in 14 undisturbed soil columns (1 m
high, 30 cm diameter) containing the same soil. For exam-
ple, Mallants (1996) observed a dispersivity of 65 cm at 90
cm depth, whereas A is only 6.14 cm in this study (Table
2). Jaynes et al. (1988) also reported that the field-scale A
measured under flooded irrigation was larger than the
field-scale A under intermittent irrigation. The larger A

under ponding conditions is probable due to solute trans- -

port through macropores and to a larger variability in sat-
urated hydraulic conductivity than the variability of the
unsaturated conductivity (e.g., Mohanty ez al., 1996).
Also shown in Fig. 5 (right) is the observed variance of
the measured resident concentration in the horizontal

direction. A ‘double peak behaviour is observed at several
depths in the two fields (at 10, 30 and 70 cm at field A,
and 15 and 90 cm at field B) as was also observed in the
numerical studie$ of Burr et al. (1994) and Harter and Yeh
(1996) and the experimental study of Mallants (1996).
Similar to other studies (Burr ez 4l., 1994; Toride and Leij,
1996b; Mallants, 1996), the minimum of the variance coin-
cidences with the time of the peak concentration, e.g., at
the fifth depth in field B. The CV of the resident concen-
tration is minimal around the peak concentration and max-
imal in the two outer parts of the BTCs which is in
agreement with the other studies. For example, the CV at
the peak concentration is around 20% for field A and
between 38% and 50% at field B. In contrast, CV-values
of the BTC at early times reach a maximum of 300% for

Table 2. Statistics of the CDE parameters from the CDE-model and observed effective parameter.

Field A
Depth (cm) 10 30 50 70 90
N* 24 24 23 24 23
0 (cm? em?) 0.370 0.346 0.350 0.354 0.356
<>+ (cm day™) 49304 5.6058 6.496C 7.100C 6.653¢
lay 0.110 0.072 0.092 0.123 0.175
CV,™ 11.03 7.21 9.12 11.03 17.53
<D>++ (cm? day) 6.7165 7.9504 13.8028 24.007¢ 40.879
OlnD 0.320 0.326 0.379 0.439 0.565
CVp™ 33.92 33.49 39.49 46.10 61.32
A (cm) 1.133 1.418 2.125 3.381 6.144
oD 0.716* 0.109 0.093 0.000 0.117
v (cm day) 4.14 5.40 6.34 7.04 6.64
D™ (cm? day) 5.91 7.00 12.44 26.35 42.41

Field B

Depth (cm)’ 15 35 50 70 90
N* 19 21 22 20 20
0 (cm? em™3) 0.376 0.406 0.467 0.452 0.430
<y>++ (cm day) 2.5404 2.6734 26755 2.417A 2.5084
lay 0.174 0.276 0.227 0.151 0.145
cv,” 17.53 28.13 23.00 15.19 14.58
<D>++ (cm? day) 2.8244 5.9668 8.8448 13.552¢ 14.109°
oD 0.413 0.290 0.334 0.295 0.407
CVp™ 43.13 29.62 34.35 30.15 42.45
A (cm) 1.112 2234 3.308 5.607 5.626
D 0.714* 0.155 0.135 0.474* 0.745*
v (cm day™) 2.47 2.73 2.68 2.40 2.44
D™ (cm? day) 3.32 7.68 11.02 17.49 16.32

* number of BTCs analyzed

** coefficient of variation

estimated parameters to the observed field-scale BTC
+ significant different from 0 at significancy level of 5 %.

e

*+ Depths with different letters have significant different means of the local parameter
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Table 3. Statistics of the CLT parameters - obtained by ordinary least squares optimization (same units as Table 2).

Field A
Depth 10 30 50 70 90
<p>+ 2.8334 27954 2.6638 2.5828 2.6048
CV, 5.06 2.54 3.45 4.49 6.78
<op>* 0.5114 0.2978 0.2818 0.300 0.3448
CV, 10.72 15.91 18.14 21.25 25.72
<v> 4.941 5.857 6.721 7.270 7.050
Oiny 0.123 0.070 0.091 0.118 0.166
CVy 12.39 7.01 9.15 11.83 11.47
<D> 7.682 8.345 14.425 25.238 43.921
CVp 35.15 34.95 40.86 47.87 64.16
T 2.95 2.84 2.68 2.55 2.58
o** 0.50 0.29 0.28 0.32 0.36
Peit™ 2.87 (2.87) 2.79 (2.79) 2.65 (2.66) 2.57 (2.58) 2.57 (2.59)
oo™ 0.53 (0.51) 0.31 (0.30) 0.30 (0.28) 0.32 (0.30) 0.39 (0.34)

Field B
Depth 15 35 50 70 90
<pl>+ " 3.5524 3.5365 3.5224 3.5894 3.5844
CV, 5.28 7.00 5.87 4.258 4.55
<op>* 0.3694 0.3504 0.3524 0.3824 0.3344
CV, 10.18 18.54 18.11 11.92 14.63
<v> 2.719 2.830 2.836 2.594 2.653
Olny 0.180 0.263 0.217 0.151 0.153
CVy 18.16 26.78 21.97 15.18 15.40
<D> 3.090 6.337 9.429 14.569 14.936
CVp 36.52 31.06 36.07 31.52 44.00
T 3.54 3.46 3.47 3.55 3.58
oH* 0.41 0.39 0.39 0.44 0.37
Mot 3.51 (3.54) 3.44 (3.51) 3.45 (3.50) 3.56 (3.58) 3.55 (3.58)
Ceit® 0.41 (0.37) 0.44 (0.35) 0.41 (0.35) 0.41 (0.38) 0.37 (0.33)

* 05 20 (0%, =0)
*" estimated parameters to the observed field-scale BTC

* Depths with different letters have significant different means of the local parameter

both fields, whereas CV-values of the tailing part have
maximum values of 100% at field A and 500% at field B.

"The horizontal scale-dependency of the spreading in the
BTC expressed as the time variance (Eqn. (22) was inves-
_ tigated using the approach of van Weesenbeeck and
Kachanoski (1991)). The results are presented in Fig. 6.
For the first three depths in field A, there is almost no spa-
tial range, indicating that almost all solute transport het-
erogeneity at the field-scale is captured within a single
TDR-measurement volume. Deeper in the soil, however,
solute transport shows heterogeneity at a larger scale,
probably due to the redistribution of water flow. This is
also clear in Fig 2a, where the variability of the time of
peak concentration increases with depth. The redistribu-
tion may result in the formation of stream paths having
different water fluxes along the transect. Numerical simu-
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lations of water and solute flow in heterogeneous soil indi-
cate that even for a homogeneous flow rate at the input
surface, water flow is funnelled in stream paths close to the
input surface (e.g., Roth, 1995; Fig. 1 in Harter and Yeh,
(1996); Vanderborght ez al., 1997b). Another feature of the
curves at field A is the decrease of E[var(t)] at a spatial
scale of 6 meter, probably because the influence of extreme
local BTCs is smaller if they are averaged over a larger
scale.

An increasing range of the scale-dependency and an
increasing difference between the local-scale and the field-
scale E[Var(t)] with depth is also observed at field B (Fig.
6b). At the second, and to a lesser extent at the third
depth, a sharp increase in the E[var(t)] is observed fol-
lowed by a decrease. This is the effect of one local BTC
with high solute dispersion (Fig. 2b) resulting in a large
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time variance. However, if the average is taken over sev-
eral adjacent BTCs, the influence of the solute dispersion
on E[var(t)] is smoothed. At the fifth depth, two sill val-
ues are observed, one with a range of about 1 m and the
other with a range of 4 m. In other words, three different
scales of heterogeneity are observed: (1) the heterogeneity
captured within the TDR~measurement volume, (2) the
heterogeneity acting at a spatial scale between 1 and 2 m,
and (3) the heterogeneity acting at a scale larger than 4 m.
The first scale can be explained by the existence of local
stream tubes with different pore water velocities within the
TDR-measurement volume (see Fig. 1b and 1c). The sec-
ond scale can be related to the formation of the stream
paths, since a range of 1 m is also observed at the third
and fourth depth. The last scale is probably related to
changing soil properties caused by some underlying fac-
tors, similar to nested variograms (Goovaerts, 1992). The
only indication for changing soil properties is a higher
water content in the second half of the transect at this
depth (Jacques ez al., 1996). However, no reason is found
why the water content increases along the transect.

This study of the scale-dependency of the time variance
of resident concentrations indicates that the measured
field-averaged BTC is representative of the ‘true’ field-
scale BT'C since the curves reach a sill value at a spatial
scale smaller that 8 m. In addition, it shows that in-situ
water flow and solute transport processes exhibit a large
variability, even at a small scale. This was also observed in
many other studies (e.g., Schulin ez 4/., 1987; Jensen and
Refsgaard, 1991).

FIELD-SCALE TRANSPORT

Thus far, the effective field-scale parameters of the CDE-
and CLT-models have been compared with the ensemble
averages of the local-scale CDE- and CLT-parameters. In
this final section, the arithmetic average of the measured
BTGCs (estimate of the effective field-scale transport) will
be compared with those predicted by the three different
STM models. The following discussion will focus on (i)
the relative importance of the local-scale transport hetero-
geneity, and how to represent it, and on (ii) the validation
of the three STMs.

(1) Stochastic Piston )"low STM

The importance of solute transport heterogeneity is inves-
tigated using the stochastic piston flow STM with only the
pdf of the local v as input. Three different estimates of the
solute particle velocity were used, namely (i) the piston
flow average solute particle velocity, vp (= jw/0), with jy
the applied water flux and 6 the measured water content,
(ii) vcpg obtained from Eqn. (7), and (iii) calculated val-
ues for vcLt using Eqn. (9).

The predictions for field B based on the pdfs for vcpE
and ovcrtT are shown in Fig. 7. Similar results were
obtained for field A (not shown here). It is clear that

describing a local-scale transport process by a piston flow
model will lead to an overprediction of the peak concen-
tration and an underestimation of the field-scale disper-
sion. Estimates of D,g; based on the statistics of the pdf of
vepe and vept (Table 1), are approximately 4 times
smaller than D obtained from fitting the macroscopic CDE
(Eqn. (6)) to the field-scale BTC at 90 cm depth. The
underestimation of the field-scale dispersion is even more
pronounced if vy, is used, since the CV of v, (= 2.7 %) is
smaller than the CV of vcpg (= 14%) and of vcLt
(= 15%). At 90 cm depth, D.g based on v, is 10 times
smaller than D. Since the CV of v, is much smaller than
the CV of the average solute particle velocity, vcpg, the
observed variability of vcpg cannot be explained by the
CV of the observed water content 6. ,
Neglecting local heterogeneity or dispersion of solute
transport within the measurement volume of the TDR
probe leads to a severe underestimation of the field-scale
solute dispersion. In other words, the dispersion of the
field-scale BTC is the result of solute spreading processes
acting at different scales, i.e., the solute spreading at the
local scale and an additional spreading mechanism at the
field-scale due to variability in local v. This is confirmed
by the results from the scale- dependency analysis. Since
the difference between D and the predicted D4 based on
the stochastic piston flow model is quite large, local-scale
transport heterogeneity contributes significantly to the
field-scale dispersion process. These results agree with the
lysimeter study of Poletika er al. (1995), which revealed
that 73% of the total variance of the mean BT'C was attrib-
uted to the solute spreading process at the local-scale. The
significant contribution of the local-scale spreading process
is also demonstrated in the study of Gupte et al. (1996).

(2) Convective-Dispersive Stream Tube Model (CD-STM)

The statistics (uy, uD, 0y, op and pyp) of the local-scale
CDE parameters (Table 2) were used to predict the field-
scale solute BTC using Eqn. (1). Fig. 5 shows the mean
measured and predicted BTCs for field A and B using one
set of parameters calibrated for each depth. For both
fields, there is a good agreement between measurements
and predictions, except at the first depth for field A.
Deterministic predictions, using <v> and <D>, were also
performed (results not shown). These deterministic pre-
dictions were in close agreement with the stochastic pre-
dictions for field A confirming the earlier statement that
velocity fluctuations contribute minimally to field-scale
dispersion. Deterministic predictions for field B were
slightly different from the stochastic predictions (higher
peak  concentrations, smaller solute dispersion).
Predictions of the variance (Fig. 5) using the STM vary
from good to reasonably good. However, the predictions of
the variance are much better than the simulations reported
by Mallants (1996).

The original five parameter STM can be simplified
assuming (i) a constant dispersivity, A = <D>/<v> for the
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entire field (v and D are perfectly positive correlated and
0D = 0y, see Eqn. (2.2) in Toride and Leij, 1996b), or (ii)
a deterministic dispersion coefficient <D> (op 0).
Predictions with those assumptions for the 90 cm depth
are shown in Fig. 8. It is clear that the influence of the
variability of the local D on the field-scale solute BTC is
of minor importance, although the assumptions for (i) and
(i) are in disagreement with the data given in Table 2.
The same conclusions were derived from the comparison
of the different effective CDE estimates and for the other
depths. These observations are in agreement with the

studies of Bresler and Dagan (1981), Amoozegard-Fard ez
al. (1982), Toride and Leij (1996a), and the lysimeter
study of Mallants (1996).

As could be expected, the CD-STM accurately
describes the field-scale BT'C at the same depth of the
determination of the local solute transport parameters. It
is also important to investigate how good this STM can
predict the solute breakthrough at other depths in order to
have an independent validation of the STM. For field A,
we used the statistics of 30 cm depth, since the field-scale
BTC at 10 cm could not be accurately described by both

Field A
0.5 0 0.012-
cm h
0.4 0.0094 | 106m
0.3 14
02 oot [}
0.1 0.003‘: f":;:"\‘gu
0»0 I’ 1) L 1) r 1 0.000 Al = | 1 1 v 1
0 38 6 9 12 15 0 5 10 15
0.3+ 0.004 -
| 1 30 cm
0.003- .
0.2“ . 4;.\
! 0002  {
0.1+ 1 1 N
] 0.0014 =Y
0.000 +eetf i"m- .
_ 0 5 10 15. 0 5 10 15
G 0.004-
) = e " 50 ¢m
- = 0.003- i
A -~ T A '_
4 G, 0:002- é,\;; )
= 5 o001{  J ‘&,,.%
Q o.ooolhvéy—-—y—iﬁ-q-—.——.
O 5 1¢c 15 20
0.004 -
0.003- o 70 cm
0002 A~
0.0014 /1%
nw a%"‘-@
0.000 L e M s s
0 5 10 15 20 25
0.003 o
i 80 em i
C 0.002- 90 cm
0.10- ] L
Ry
] 0.0017 /X%
_ 1 7
0.00 =5 0.000 ' A
0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35
Time (days) Time (days)

Fig. 5a. (and opposite) Left: Observed (open circles) field-scale BTCs Sor field A (fig. 5a) and B (fig. 5b) at the five depths, together with
the fitted macroscopic CDE (full line) and predicted field-scale BTCs using the CD-STM (long dashes: predictions with depth dependent para-

meters, short dashes: predictions with one set of parameters).

Right: Observed (open circles) variance of the horizontal local resident concentrations Jor field A (fig. 5a) and B (fig. 5b) at the five depths,
together with the predicted variances-using the CD-STM (long dashes: predictions with depth dependent parameters, short dashes: predictions

with one set of parameters).
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the macroscopic CDE and the STM. Furthermore, the
<vp> was adjusted for each depth according to the values
in Table 2, since <v> changes with depth. For field B, sta-
tistics of the 15 cm depth were used and <v> was not
adjusted with depth. The predictions (Fig. 5) demonstrate
the increasing overestimation of the peak concentration
and underestimation of the solute dispersion with depth.
Furthermore, the variance in the beginning and the tailing
of the breakthrough is underestimated, whereas the maxi-
mum observed variance is severely overestimated (the esti-
mated variance at 70 and 90 cm depth for field B is not
displayed, since the values were too high). Thus, the
assumption that the local transport process, measured with
TDR probes, can be described with a local CDE with con-
stant parameters v and D with depth is not fulfilled for
these two field experiments. Especially <D> increases with
depth which is in contradiction with the assumption of a
local CDE process (Fig. 1b).
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Lioty imam s e e ma |
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(3) Stochastic-convective lognormal stream tube model (SC-
STM)

The predicted field-scale BT'Cs based on Eqn. (8) using
effective parameters u.gand o,z (Eqns 11 and 12) for each
depth are displayed in Fig. 9. Similar to the CD-STM, the
SC-STM model predicts the observed field-scale BTCs
very well. Predictions of the variance are obtained using a
Monte-Carlo simulation where y is treated as a normally
distributed random variable. These estimations display a
bimodal behaviour and are relatively close to the observed
variance. Estimates of p,gand opgrare given in Table 3. In
general, pyy and o, are close to the observed g and &
This means that the observed CVs of 10-25% of the local
o-parameter, which is in contradiction with the assump-
tion of a deterministic ¢, did not influence the predictions
of this model. If o1,y = 0 in Eqns (11) and (12), predicted
field-scale BTCs are little different from the prediction
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with the observed o1,y (results not shown) and also Hefr
and o,y are close to the observed ones (Table 3). This
illustrates again the large contribution of local-scale het-

. erogeneity, characterized by <o>, in comparison with the

variability of v across the transect.

Similar to the analysis of the CD-STM, the predictions
of BTCs at different depths using one set of parameters
(30 cm depth for field A, and 15 cm for field B) were com-
pared with the observed BTCs in Fig. 9. An analogue cor-
rection for the changing <wp;> with depth for field A is
done. In contrast to the result from the CD-STM, the SC-
STM predicts the peak concentration and the field-scale
dispersion accurately for all depths. Variance predictions
from either a different set of parameters for each depth, or
one set of parameters for all depths, do not differ in their
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shape but mainly in their magnitude. The difference
between the two depends on the relative magnitude of the
standard deviation of the local g or In(v): if o 1y at a cer-
tain depth z; is larger than the o |y from another depth
21, which is used to predict the field-scale BTC at 2y with
the SC-STM, the predicted variance using the parameters
of 21 will be lower than the predictions using the parame-
ters of 22, and vica versa. Thus, the SC-STM can describe
the field-scale BTCs at different depths meaning that the
local-scale transport can be represented by the transport
processes outlined above (Fig. 1c). Furthermore, small dif-
ferences of <oy> and oy,, between different depths, as the
ones observed in this study, have only a minor influence
on the predicted field-scale BTC (Fig. 9). However, these
parameters have a significant effect on the predicted vari-
ance of the local BT'Cs which is larger for larger oypy.

Summary and Conclusions

In this study, the transition of scale of a transport process,
ie., from local-scale to a field-scale, was investigated.
Predictions of the field-scale transport process were made
within a stochastic framework in which the soil is viewed
as a set of non-interacting and vertically homogeneous soil
columns. Solute movement at the local-scale was described
by assuming either a CDE- or a CLT-model. Field-scale
solute transport was then predicted based on the statistics
of the uni- or bivariate pdfs of the local-scale solute trans-
port parameters. The major conclusions of this study are:

(1) TDR-~measured time-series of solute resident con-
centrations at 5 depths and 24 locations along a 8 m long
transect in a loamyy and silty-loam field could be
described well by the local CDE- or CLT-model.

(2) Transport parameters v and D for the CDE-model
are bivariate lognormally distributed. The parameters gy
and o for the CLT-model are bivariate normally distrib-
uted. This implies that the average solute particle velocity
and the dispersion coefficient, calculated as an exponential
function of yj and 0y, are lognormally distributed.

(3) The differences between the ensemble averages of
the local-scale parameters and the parameters describing
the field-scale BTC are small for the loamy soil (field A)
and moderate for the Isilty-oam soil (field B). This illus-
trates that the local-scale solute transport heterogeneity
contributes significantly to the total field-scale dispersion.
Also, the study of the scale-dependency revealed the
importance of small-scale variability, especially near the
soil surface. Deeper in the soil, large-scale variability of
water fluxes plays a more important role. This process is
probably due to the horizontal water redistribution in the
soil.

(4) The stochastic piston flow STM overpredicted the
mean peak concentrations considerably and underpre-
dicted the solute dispersion illustrating again that the
local-scale variability contributes significantly to the field-
scale solute dispersion. Both the CD-STM and the SC-



Comparison of Three Stream Tube/ Models Predicting Field-Scale Solute Transport

15 cm
N 1
20
35¢cm
e
40
50 ¢cm
g y y '-'JS-'“I-L Doy gy
0 10 20 30 40 50 60
Time (Days)

.15
4 ) 70 ¢cm
0.10 I\
- [
0.06 1
0.00 -frappr oS
0 10 20 30 40 50 60
0.06
0.04
0.02
0.00 -feetest™r- o
0 1C 20 30 40 50 60
Time (days).
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STM generally gave good predictions of the field-scale
BTCs and reasonably good descriptions of the variance.
However, if only one set of parameters calibrated at shal-
low depths was used to describe the field-scale BTCs at
different depths, the SC-STM was better than the CD-
STM. Therefore, the local-scale transport, as measured
with TDR-probes, should be viewed as a correlated flow
model or a stochastic convective transport process
described by the CLT-model.

(5) The predictions with the SC-STM revealed that the
field-scale BTC estimates are robust to the small differ-
ences of <01> and 01,y with depth observed in this study.
In contrast, estimates of the variance of the local BTCs in
the horizontal direction are sensitive t0 Oyy.
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meters, short dashes: predictions with one set of parameters).
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together with the predicted variances using the SC-STM (long dashes: predictions with depth dependent parameters, short dashes: predictions
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